New Polycyclic β-Lactams. Synthesis of 2a,3-Dihydroazeto[1,2-a]-quinoline-1,4(2H)-diones, Structural Analogues of the Carbacephalosporin Antibiotics

Mario D. Bachi * and Joseph Klein
Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel

A method has been developed for the preparation of dihydroxydihydroazeto[1,2-a]quinoline-1,4(2H)diones (1). The synthesis involved, as a key step, the completion of the polycyclic β-lactam system by a modified Bischler-Napieralski reaction. It was illustrated by the synthesis of (\pm)-7,8-dihydroxy-3,3-dimethyl-2-phenoxyacetamido-2a,3-dihydroazeto[1,2-a]quinoline-1,4(2H)-dione (20), which is structurally related to the carbacephalosporin antibiotics.

During the last decade, several new classes of antibacterial β-lactams which do not derive from the classical penicillin or cephalosporin antibiotics have been described. ${ }^{1}$ We now report the synthesis of a new class of fused polycyclic β lactams represented by formula (1). Taking cephalosporin (2) as a parent compound, two major changes have been introduced to give structure (1). The sulphur atom of cephalosporin has been formally substituted by a carbon unit, as in the carbacephalosporins (3), ${ }^{2}$ and the carboxylic group has been replaced by a different acidic functionality in an analogous position to that of the tetrazolyl group in the 4-(tetrazol-5-yl)cephems (4) and their related 3-(tetrazol-5-yl)penams. ${ }^{16}$ It was questioned whether, similarly to the carbacephalosporins and to the forementioned tetrazolyl derivatives, some compounds of type (1) may exhibit antibacterial activity. It was also reasoned that dihydroxyazeto[1,2-a]quinoline-1,4(2H)-diones (1) may function as precursors of potential antibiotics of structure (5), either through the chemical ${ }^{3}$ or enzymatic ${ }^{4}$ oxidative cleavage of their dihydric phenol system. Recently, a polycyclic β-lactam bearing, similarly to compounds (1), a phenolic 8 -hydroxy group was synthesized and reported to exhibit a weak antibacterial activity. ${ }^{5}$

Our synthetic strategy was based, in the first stage, on the construction of an appropriately substituted non-fused β lactam such as (12) on the nitrogen atom of 2,3-dihydroxyaniline, followed in the second stage by the completion of the fused polycyclic molecular backbone through a modified Bischler-Napieralsky reaction. The protected dihydroxyaniline (9) was prepared by the Curtius reaction of the corresponding acid (7), which was obtained by treatment of methyl 2,3-hydroxybenzoate with dichlorodiphenylmethane at $180^{\circ} \mathrm{C},{ }^{6}$ followed by selective deprotection of the resulting acetal ester (6) with LiI in 2,6-lutidine. ${ }^{7}$ Treatment of the acid (7) with triethylamine and ethyl chloroformate, followed by tetramethylguanidinium azide and subsequent degradation of the resulting acyl azide (8), afforded the amine (9) (90%).
Treatment of the imine (11) resulting from the condensation of the amine (9) and the aldehyde (10), ${ }^{8}$ with triethylamine followed by azidoacetyl chloride, afforded the trans-azido- β lactam (12) (27%). When compound (11) was added at $-78^{\circ} \mathrm{C}$ to a preformed mixture of azidoacetyl chloride and triethylamine, both the trans- β-lactam (12) (8.5\%) and its cis isomer (13) (4%) were obtained. Annelation of the trans- β lactam (12) into the polycyclic fused β-lactam (14), was performed in chloroform by addition of 2,6 -lutidine and PCl_{5}, followed by SnCl_{4}, and eventually by aqueous work-up. This transformation evidently involves the initial formation of the imidoyl chloride A which, with the Lewis acid, generates the highly electrophilic nitrilium ion B, which in turn reacts with an aromatic carbon to give the cyclized compound C as in the Bischler-Napieralski reaction. ${ }^{9}$ Hydrolysis of the exocyclic

(1)

(2) $X=S, Y=\mathrm{CO}_{2} \mathrm{H}$
(3) $X=\mathrm{CH}_{2}, Y=\mathrm{CO}_{2} \mathrm{H}$
(4) $X=S, Y=$ tetrazol-5-yl

(5)

(g) $\mathrm{R}=\mathrm{NH}_{2}$
$\mathrm{OCHC}(\mathrm{Me})_{2} \mathrm{CONHPh}$
(10)
(11)
imine C with 3 M -hydrochloric acid in dioxane afforded the fused β-lactam (14). When the annelation was performed under the conditions described in the Experimental section, compound (14) was obtained in 70% yield. However, an increase in the ratio of lutidine to SnCl_{4} resulted in a lower yield owing to the neutralization of the Lewis acid catalyst, while a decrease in this ratio brought about a premature acidcatalyzed deprotection of the hydroxy groups. The cis- β lactam (13) could not be annelated under similar conditions, probably owing to excessive steric compression between the β-azido group and one of the methyl groups. Deprotection of the lactam (14) with trifluoroacetic acid required the addition of a drop of water to give the dihydric phenol (18) and benzophenone.

Conversion of the azide function into an acylamino group was performed by a method recently developed in this laboratory which avoids the intermediacy of a free amino group. ${ }^{10}$ Thus, the azide (14) was converted into the corresponding iminophosphorane (15). Treatment of crude compound (15) with phenoxyacetyl chloride, followed by aqueous work-up, gave the acylamino- β-lactam (16) (80%). Deprotection of the lactam (16) with trifluoroacetic acid, as described

(12)

(14) $X=N_{3}$
(15) $\mathrm{X}=\mathrm{Ph}_{3} \mathrm{P}=\mathrm{N}$
(16) $X=\mathrm{PhOCH}_{2} \mathrm{CONH}$
(17) $X=p-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}=\mathrm{N}$

(18) $R=H, X=N_{3}$
(19) $R=M e, X=N_{3}$
(20) $R=H, X=P h O C H_{2} \mathrm{CONH}$
(21) $R=M e, X=\mathrm{PhOCH}_{2} \mathrm{CONH}$
for compound (14), afforded (\pm)-7,8-dihydroxy-3,3-dimethyl-2-phenoxyacetamido-2a,3-dihydroazeto[1,2-a]quinoline-1,4(2 H)-dione (20) (quantitative). Compound (20) showed no antibacterial activity in vitro at a concentration of $90 \mu \mathrm{~g} / \mathrm{ml}$ against Staph. aureus strain H and E. coli 7343. Since the known bicyclic β-lactam antibiotics bearing an acylamino side chain have the cis-geometry across the azetidinone ring, it was interesting to test the biological activity of the cis isomer of (20) as well. However, attempts to prepare this compound from (14) and (15) through the epimerization ${ }^{10,11}$ of their p-nitrobenzylidene derivative (17) were unsuccessful.

The β-lactam carbonyl group exhibits in the i.r. spectrum of compound (18) an absorption band at $1725 \mathrm{~cm}^{-1}$, and in the spectrum of (20) a peak at $1730 \mathrm{~cm}^{-1}$. These remarkably low frequencies are attributed to hydrogen bonding with the $8-\mathrm{OH}$ group. Indeed, the β-lactam carbonyls of the dimethyl ethers (19) and (21), obtained respectively from (18) and (20) with diazomethane, absorb at $1770 \mathrm{~cm}^{-1}$. This frequency is within the expected range for the carbonyl group of fused β-lactams. ${ }^{12}$ A low frequency of $1720 \mathrm{~cm}^{-1}$ has been recently reported for the carbonyl absorption band of the N-hydroxyphenyl- β lactam (22). ${ }^{5}$

Experimental

I.r. spectra were recorded with a Perkin-Elmer 237 spectrophotometer. When not otherwise specified, the ${ }^{1} \mathrm{H}$ n.m.r. data were determined on a 90 MHz Bruker RF-HFX-10 spectrometer. The 80 MHz spectra were recorded on a Varian FT80A instrument. Mass spectra were recorded on a Varian

A

MAT-731 (double focusing) spectrometer. Ether refers to diethyl ether.

Methyl 2,3-Diphenylmethylenedioxybenzoate (6).-Methyl 2,3-dihydroxybenzoate ($24 \mathrm{~g}, 0.14 \mathrm{~mol}$) was heated under a stream of argon to $180^{\circ} \mathrm{C}$ and $\mathrm{Ph}_{2} \mathrm{CCl}_{2}(99.5 \mathrm{~g}, 0.42 \mathrm{~mol})$ was added with vigorous stirring. When all the starting material had reacted (t.l.c.), the reaction mixture was brought to room temperature and methanol (50 ml) was added followed, dropwise by an excess of 10% aqueous NaHCO_{3}. The reaction mixture was stirred for 16 h and the precipitate was collected. The crude product was recrystallized from methanol to give a first crop of pure compound (6) and a methanolic solution of (6) and benzophenone. The latter was removed at $140^{\circ} \mathrm{C} / 0.5$ mmHg and the residue was recrystallized from methanol to give a second crop of the ester (6) (total $40 \mathrm{~g}, 84 \%$), m.p. $92-94^{\circ} \mathrm{C}$ (Found: C, $75.9 ; \mathrm{H}, 4.8 . \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C , 75.9 ; H, 4.85%).

2,3-Diphenylmethylenedioxybenzoic Acid (7).-A mixture of the ester (6) $(21.6 \mathrm{~g}, 0.065 \mathrm{~mol})$, dry LiI ($33.5 \mathrm{~g}, 0.25 \mathrm{~mol}$) and dry 2,6-lutidine (11) was boiled under reflux for 3 h . Most of the lutidine was evaporated, the residue was diluted with water, acidified with conc. hydrochloric acid and extracted with EtOAc. The residue obtained after drying and evaporation of the solvent was recrystallized from CHCl_{3}-hexane to give the acid (7) (17 g), m.p. $188-190^{\circ} \mathrm{C}$ [an additional 2.7 g of (7) were obtained on chromatography of the mother-liquor from the recrystallization] (Found: $\mathrm{C}, 75.3 ; \mathrm{H}, 4.55 . \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 4.4 \%$).

2,3-Diphenylmethylenedioxyaniline (9).-To a stirred mixture of the acid (7) $(10 \mathrm{~g}, 0.031 \mathrm{~mol})$ and triethylamine $(3.44 \mathrm{~g}$, 0.034 mol) in dry tetrahydrofuran (THF) (400 ml) at $0{ }^{\circ} \mathrm{C}$ was added ethyl chloroformate ($3.2 \mathrm{~g}, 0.034 \mathrm{~mol}$) and stirring was continued for 1 h . A solution of tetramethylguanidinium azide ($7 \mathrm{~g}, 0.034 \mathrm{~mol}$) in dry chloroform (100 ml) was added to the reaction mixture and stirring at $0^{\circ} \mathrm{C}$ was continued for an additional 2.5 h . The precipitate was filtered off and the filtrate was evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with dilute hydrochloric acid and with water, dried and evaporated. The residue, which consisted of the azide (8), was dried in a vacuum desiccator over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 16 h . The dried compound was dissolved in dry benzene (200 ml) and boiled under reflux until no $2100 \mathrm{~cm}^{-1}$ absorption band could be detected in the i.r. spectrum (ca. 90 min). Benzene was
evaporated and the residue was dissolved in dioxane (100 ml). To this a $2.5 \mathrm{~m}-\mathrm{NaOH}$ solution (200 ml) was added with stirring, followed, dropwise, by 6 M -hydrochloric acid, until pH 8 was reached. Most of the solvent was removed under reduced pressure and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. dried and evaporated. The residue was taken up with ether, and filtered. A saturated solution of oxalic acid in ether was added until precipitation was complete. The precipitated salt was filtered, suspended in EtOAc and treated with a $3 \mathrm{~m}-\mathrm{NaOH}$ solution until all the solid dissolved. The layers were separated and the aqueous phase extracted with EtOAc ($\times 3$). The combined organic fractions were washed with water, dried and evaporated to give the amine (9) ($8.2 \mathrm{~g}, 90 \%$), m.p. $117-119^{\circ} \mathrm{C}$ (MeOH) (Found: $\mathrm{C}, 78.75 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.9 . \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 78.9 ; \mathrm{H}, 5.2 ; \mathrm{N}, 4.8 \%$).
β-Lactams (12) and (13).-(a) A mixture of the amine (9) ($656 \mathrm{mg}, 2.27 \mathrm{mmol}$), the aldehyde (10$)^{8}(440 \mathrm{mg}, 2.3 \mathrm{mmol}$), and anhydrous magnesium sulphate (600 mg) in dry ether (20 ml) was stirred for 20 h and then filtered and evaporated. The residue was dissolved in dry benzene (70 ml), boiled in a Dean-Stark separator for 1 h , and then cooled to room temperature. Triethylamine ($0.46 \mathrm{~g}, 4.6 \mathrm{mmol}$) was added to the reaction mixture which contained the imine (11). This was followed by the dropwise addition (1 h) of azidoacetyl chloride ($0.56 \mathrm{~g}, 4.67 \mathrm{mmol}$) in benzene (25 ml). The reaction mixture was stirred for an additional 1 h and then a second portion of triethylamine $(0.46 \mathrm{~g}, 4.6 \mathrm{mmol})$ was added, followed (1 h) by more azidoacetyl chloride (0.56 g) in portions in benzene (25 ml). The reaction mixture was stirred for 1 h , more triethylamine ($0.80 \mathrm{~g}, 7.9 \mathrm{mmol}$) was added and stirring was continued for 16 h , when an additional portion of azidoacetyl chloride ($0.28 \mathrm{~g}, 2.33 \mathrm{mmol}$) was added, followed after 30 min by more triethylamine $(0.36 \mathrm{~g}, 3.6 \mathrm{mmol})$. The reaction mixture was stirred for 20 h and then filtered through Celite, evaporated, and chromatographed on a silica-gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The β-lactam-containing fractions were combined and chromatographed again on a Florisil column using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane as eluant to give trans-3-azido-1-(3,4-diphenyl-methylenedioxyphenyl)-4-(1-methyl-1-phenylcarbamoylethyl)-azetidin-2-one (12) ($340 \mathrm{mg}, 27 \%$); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 2100,1765$, and $1670 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 1.2(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.23(3 \mathrm{H}, \mathrm{s}$, CMe), 4.38 ($1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 4-\mathrm{H}$), 4.78 ($1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 3-\mathrm{H}$), 6.74 (s), and 6.9-7.6 (m, ArH and NH) (Found: $M^{+} 545.2069$. $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $M^{+} 545.2063$); m/e $545\left(M^{+}\right), 489$ ($M^{+}-\mathrm{CO}-\mathrm{N}_{2}$).
(b) A mixture of the amine (9) ($2.5 \mathrm{~g}, 8.64 \mathrm{mmol}$), the aldehyde (10) ($1.72 \mathrm{~g}, 9 \mathrm{mmol}$), and anhydrous $\mathrm{MgSO}_{4}(2.5 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was stirred for 20 h . The MgSO_{4} was filtered off and the filtrate was concentrated to 20 ml . This solution, which contained the imine (11), was added at $-78^{\circ} \mathrm{C}$, during 2 h , to a reaction mixture prepared beforehand by the addition (30 min) in portions of a solution of azidoacetyl chloride ($1.71 \mathrm{~g}, 14.34 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ to a stirred solution of triethylamine ($1.45 \mathrm{~g}, 14.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach ambient temperature, and after 20 h it was washed with water, dried and evaporated. The residue was chromatographed on a silica-gel column ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) and the fractions containing the β-lactams (12) and (13) along with some aldehyde (10) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred with 40% aqueous NaHSO_{3} for 3 h . The residue obtained after filtration and evaporation of the organic layer was chromatographed on silica-gel plates (EtOAc-CCl ${ }_{4}$) to give the trans- β-lactam (12) $(0.4 \mathrm{~g}, 8.5 \%)$ and its cis-isomer (13) $(0.2 \mathrm{~g}, 4 \%) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ 2100,1770 , and $1670 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 1.09(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, 1.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 5.04 ($1 \mathrm{H}, \mathrm{d}, J 5.5 \mathrm{~Hz}, 4-\mathrm{H}$), 5.12 ($1 \mathrm{H}, \mathrm{d}$, $J 5.5 \mathrm{~Hz}, 3-\mathrm{H}$) and $6.77-7.58$ (m, ArH) (Found: $M^{+} 545.2069$.
$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $M^{+} 545.2063$); m/e $545\left(M^{+}\right)$, 517 $\left(M^{+}-\mathrm{CO}\right)$, and $489\left(M^{+}-\mathrm{CO}-\mathrm{N}_{2}\right)$ (Found: C, 70.2; $\mathrm{H}, 4.9 ; \mathrm{N}, 13.3 . \mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.4 ; \mathrm{H}, 5.0 ; \mathrm{N}$, 12.8\%).
(\pm)-2-Azido-7,8-diphenylmethylenedioxy-3,3-dimethyl-2a,3dihydroazeto $[1,2-\mathrm{a}]$ quinoline-1,4(2H)-dione (14).-A mixture of the β-lactam (12) ($200 \mathrm{mg}, 0.37 \mathrm{mmol}$), 2,6 -lutidine ($0.5 \mathrm{ml}, 4.33 \mathrm{mmol}$), and $\mathrm{PCl}_{5}(80 \mathrm{mg}, 0.38 \mathrm{mmol})$ in dry chloroform (10 ml) was stirred for 2 h at $20^{\circ} \mathrm{C}$ and then boiled under reflux for 30 min . The reaction mixture was brought to room temperature and $\mathrm{SnCl}_{4}(211 \mathrm{mg}, 0.81 \mathrm{mmol})$ was added. After being stirred for 16 h , a second portion of $\mathrm{SnCl}_{4}(211 \mathrm{mg})$ was added, followed after 2 h by a third portion of SnCl_{4} ($90 \mathrm{mg}, 0.35 \mathrm{mmol}$). The reaction mixture was stirred for an additional 1 h and then poured into a mixture of EtOAc and a pH 7 phosphate buffer. After filtration through Celite the organic layer was washed with water, dried, and evaporated. The residue was dissolved in dioxane (10 ml) and 3 M -hydrochloric acid (3 ml) was added. After 1 h the solution was diluted with water and extracted with EtOAc. The organic phase was dried, evaporated and the residue was chromatographed on a silica-gel column (EtOAclight petroleum) to give the fused β-lactam (14) ($117 \mathrm{mg}, 70 \%$); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 2100,1775$, and $1680 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 1.11$ (3 H, s, CMe), 1.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.81 ($1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 2 \mathrm{a}-\mathrm{H}$), $4.29(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 2-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 6-\mathrm{H})$, and $7.24-7.83(11 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ph}$ and $5-\mathrm{H}) ; \mathrm{m} / e 452\left(\mathrm{M}^{+}\right), 424$ $\left(M^{+}-\mathrm{H}_{2}\right.$ and/or $\left.M^{+}-\mathrm{CO}\right)$, and $396\left(M^{+}-\mathrm{H}_{2}-\mathrm{CO}\right)$.
(土)-2-Azido-7,8-dihydroxy-3,3-dimethyl-2a,3-dihydroazeto $[1,2$-a]quinoline-1,4(2H)-dione (18) and (\pm)-2-Azido-7,8-dimethoxy-3,3-dimethyl-2a,3-dihydroazeto[1,2-a]quinoline$1,4(2 \mathrm{H})$-dione (19).-A solution of compound (14) (50 mg , $0.11 \mathrm{mmol})$ in $\mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}(1 \mathrm{ml})$ containing 1 drop of water was kept for 1 h at room temperature. The residue obtained after the evaporation of $\mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}$ was triturated with light petroleum to give the dihydric phenol (18) (25 mg , 78%) ; $v_{\text {max. }}(\mathrm{KBr}) 2100,1725$, and $1670 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2^{-}}\right.$ CO] 1.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 1.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 4.19 (1 H, d, J $2.5 \mathrm{~Hz}, 2 \mathrm{a}-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 2-\mathrm{H}), 6.78$ ($1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, 6-\mathrm{H}$), $7.38(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, 5-\mathrm{H})$ (Found: M^{+}288.0862. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires M^{+}288.0818); m/e 288 $\left(M^{+}\right), 260\left(M^{+}-\mathrm{N}_{2}\right), 205\left(M^{+}-\mathrm{N}_{3} \mathrm{CHCO}\right)$, and 178 ($M^{+}-\mathrm{N}_{3} \mathrm{CHCHCMe}_{2}$).

To a solution of the dihydroxy compound (18) in EtOAc was added an excess of diazomethane in ether. Evaporation of the organic solvents afforded the dimethyl ether (19) (quantitative), $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 2100,1770$, and $1680 \mathrm{~cm}^{-1}$; $\delta\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 1.12(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, 3.78 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 2 \mathrm{a}-\mathrm{H}$), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.97 ($3 \mathrm{H}, \mathrm{s}$, OMe), $4.70(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 2-\mathrm{H}), 6.79(1 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, 6-\mathrm{H})$, and $7.74(1 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, 5-\mathrm{H})$ (Found: $M^{+} 316.1110$. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $M^{+} 316.1171$); m/e $316\left(M^{+}\right), 288$ $\left(M^{+}-\mathrm{N}_{2}\right)$, and $\left.206\left(M^{+}-\mathrm{N}_{3} \mathrm{CHCHCMe}\right)_{2}\right)$.

(\pm)-7,8-Diphenylmethylenedioxy-3,3-dimethyl-2-phenoxy-

 acetamido-2a,3-dihydroazeto[1,2-a]quinoline-1,4(2H)-dione (16).-(a) To a solution of the azide (14) ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added triphenylphosphine (100 mg , $0.38 \mathrm{mmol})$. After being stirred for 1 h under argon, the solvent was evaporated and the residue was triturated with light petroleum to give quantitatively the phosphinimine (15), amorphous solid; $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1760,1680 \mathrm{~cm}^{-1} ; \delta(80 \mathrm{MHz}$, CDCl_{3}) 0.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 0.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.86 (1 H apparent br s, 2a-H), $5.56(1 \mathrm{H}, \mathrm{dd}, J 2.5,28 \mathrm{~Hz}, 2-\mathrm{H}), 6.63$ ($1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, 6-\mathrm{H}), 6.58-7.91(26 \mathrm{H}, \mathrm{m}, 5 \mathrm{Ph}$ and $5-\mathrm{H})$.To a stirred solution of (15) ($50 \mathrm{mg}, 0.073 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$, at $0{ }^{\circ} \mathrm{C}$ under argon, was added a solution of phenoxyacetyl chloride ($12.4 \mathrm{mg}, 0.073 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{ml})$ during 15 min . After 50 min at $0^{\circ} \mathrm{C}$ and an additional 1 h at $25^{\circ} \mathrm{C}$, the reaction mixture was cooled again to $0^{\circ} \mathrm{C}$ and a solution of 4% aqueous $\mathrm{KHCO}_{3}(3 \mathrm{ml})$ was added. Stirring was continued for an additional 5 min , the organic phase was then washed with water, dried, and evaporated. Chromatography of the residue on a silica-gel plate afforded the amide (16) ($30 \mathrm{mg}, 73 \%$).
(b) The azide (14) ($35 \mathrm{mg}, 0.074 \mathrm{mmol}$) and triphenylphosphine ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$) in dry chloroform (40 ml) were stirred for 3 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and phenoxyacetyl chloride ($62.7 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added. After being stirred for 1 h at $0^{\circ} \mathrm{C}$ and 90 min at $25^{\circ} \mathrm{C}$, the mixture was cooled again to $0^{\circ} \mathrm{C}$ and a solution of 4% aqueous $\mathrm{KHCO}_{3}(3 \mathrm{ml})$ was added. The mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$ and 15 min at $25^{\circ} \mathrm{C}$ to give, after work-up as in (a), the title compound (16) ($35 \mathrm{mg}, 80 \%$, two steps); $v_{\text {max }}$. $\left(\mathrm{CHCl}_{3}\right) 1774,1685 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 1.19(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, 1.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.81(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 2 \mathrm{a}-\mathrm{H}$), $4.56(2 \mathrm{H}, \mathrm{s}$, PhCH $\mathrm{H}_{2} \mathrm{CO}$), $5.38(1 \mathrm{H}, \mathrm{dd}, J 2.5,8.5 \mathrm{~Hz}, 2-\mathrm{H})$, and $6.69-7.83$ ($18 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph}, 5-, 6-\mathrm{H}$, and NH) (Found: $M^{+} 560.1960$. $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M^{+} 560.1947$); m/e, $560\left(M^{+}\right), 425$ $\left(M^{+}-\mathrm{PhOCH}_{2} \mathrm{CO}\right), 370\left(M^{+}-\mathrm{PhOCH}_{2} \mathrm{CONH}^{-} \mathrm{C}=\mathrm{CO}\right)$, $342\left(M^{+}-\mathrm{PhOCH}_{2} \mathrm{CONHCHCHCMe}_{2}\right)$, and $218\left(\mathrm{PhOCH}_{2}{ }^{-}\right.$ CONHCHCHCMe 2).
(\pm)-7,8-Dihydroxy-3,3-dimethyl-2-phenoxyacetamido-2a,3-dihydroazeto[1,2-a]quinoline-1,4(2H)-dione (20).-A solution of (16) $(65 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}(3 \mathrm{ml})$, containing one drop of water, was kept for 20 min at $0^{\circ} \mathrm{C}$. The residue, obtained after the removal of $\mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}$ under reduced pressure, was chromatographed on silica gel (toluene-ethyl acetate) to give benzophenone and the title compound (20) (45 mg , quantitative), amorphous solid (after trituration with light petroleum); $v_{\max }(\mathrm{KBr}) 1730,1700-1650 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}-\mathrm{D}_{2} \mathrm{O}\right] 1.17\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.22(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 4.27$ ($1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 2 \mathrm{a}-\mathrm{H}$), 4.63 ($2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{CO}$), $5.41(1 \mathrm{H}, \mathrm{d}$, $J 2.5 \mathrm{~Hz}, 2-\mathrm{H}$), and $7.42-6.71(\mathrm{~m}, \mathrm{Ph}, 5-$ and $6-\mathrm{H})$ (Found: M^{+}396.1284. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M^{+} 396.1321$); $m / e 396$ $\left(M^{+}\right), 302\left(M^{+} \mathrm{PhOH}\right), 261\left(M^{+}-\mathrm{PhOCH}_{2} \mathrm{CO}\right), 218$ ($\mathrm{PhOCH}_{2} \mathrm{CONHCHCHCMe} 2$), and $205\left(M^{+}-\mathrm{PhOCH}_{2}{ }^{-}\right.$ CONHCHCO).

To a solution of the dihydroxy compound (20) in EtOAc was added an excess of diazomethane in ether. Evaporation
of the solvents afforded 7,8-dimethoxy-3,3-dimethyl-2-phenoxy-acetamido-2a,3-dihydroazeto[1,2-a]quinoline-1,4(2H)-dione (21); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 1770,1690-1670 \mathrm{~cm}^{-1} ; \delta(80 \mathrm{MHz}$, CDCl_{3}), 1.21 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.83(1 \mathrm{H}, \mathrm{d}$, $J 2.5 \mathrm{~Hz}, 2 \mathrm{a}-\mathrm{H}$), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.56$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH} \mathrm{H}_{2} \mathrm{CO}$), $5.28(1 \mathrm{H}, \mathrm{dd}, J 2.5,8 \mathrm{~Hz}, 2-\mathrm{H})$, and 6.99-7.68 (m, ArH) (Found: M^{+}424.1623. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M^{+} 424.1634$); $m / e 424\left(M^{+}\right), 234\left(M^{+}-\mathrm{PhOCH}_{2}-\right.$ $\left.\mathrm{CONH}^{-} \mathrm{C}=\mathrm{C}=\mathrm{O}\right)$, and $206\left(M^{+}-\mathrm{PhOCH}_{2} \mathrm{CONHCH}-\right.$ CHCMe_{2}).

References

1 For recent reviews see: (a) L. D. Cama and B. G. Christensen, Ann. Rep. Med. Chem., 1978, 13, 149; (b) R. D. G. Cooper, in 'Topics in Antibiotic Chemistry,' ed. P. G. Sammes, Ellis Horwood Ltd., Chichester, 1980, vol. 3, p. 39; (c) F. A. Jung, W. R. Pilgrim, J. P. Poyser, and P. J. Siret, in 'Topics in Antibiotic Chemistry,' ed. P. G. Sammes, Ellis Horwood Ltd., Chichester, 1980, vol. 4, p. 13; (d) H. Otsuka, W. Nagata, M. Yoshioka, M. Narisada, T. Yoshida, Y. Harada, and H. Yamada, Med. Res. Rev., 1981, 1, 217.
2 R. N. Guthikonda, L. D. Cama, and B. G. Christensen, J. Am. Chem. Soc., 1974, 96, 7584.
3 (a) R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U. Daeniker, and K. Schenker, J. Am. Chem. Soc., 1954, 76, 4749; (b) T. Matsuura, H. Matsushima, S. Kato, and I. Saito, Tetrahedron, 1972, 28, 5119; (c) M. M. Rogic and T. R. Demmin, J. Am. Chem. Soc., 1978, 100, 5472; (d) J. Tsuji and H. Takayanagi, Tetrahedron, 1978, 34, 641 .
4 (a) O. Hayaishi, M. Katagani, and S. Rothberg, J. Am. Chem. Soc., 1955, 77, 5450; (b) M. Nozaki, in ' Molecular Mechanism of Oxygen Activation,' ed. O. Hayashi, Academic Press, New York, 1974, p. 135.
5 G. Just, Y. S. Tsantrizos, and A. Ugolini, Can. J. Chem., 1981, 59, 2981.
6 L. Jurd, J. Am. Chem. Soc., 1959, 81, 4606.
7 F. Elsinger, J. Schreiber, and A. Eschenmoser, Helv. Chim. Acta, 1960, 43, 113.
8 M. Perelman and S. A. Mizsak, J. Am. Chem. Soc., 1962, 84, 1988.

9 G. Fodor and S. Nagubandi, Tetrahedron, 1980, 36, 1279.
10 M. D. Bachi and J. Vaya, J. Org. Chem., 1979, 44, 4394.
11 R. A. Firestone, N. S. Maciejewicz, R. W. Ratcliffe, and B. G. Christensen, J. Org. Chem., 1974, 39, 437.
12 P. V. DeMarco and R. Nagarajan, in 'Cephalosporins and Penicillins,' ed. E. H. Flynn, Academic Press, New York and London, 1972, p. 311.

Received 17th November 1982; Paper 2/1928

